
1 Triangles within Triangles | Paul Lynham

Triangles within Triangles

Introduction
The “Triple Constraint” or “Iron Triangle” is a concept whereby constraints on the system are in

opposition to each other. There are several trilemmas in computing including CAPi, Zooko's Triangleii

and the “Project Triangle”, to be considered here. In relation to a software development project,

the constraints are usually considered to be scope, cost and time.

 Figure 1: The Iron Triangle

The scope can be thought of as the features and functionality of the system, while the cost is derived

from the resources used, such as human resources and anything else needed to support them e.g.

computers and software. Time is the schedule to produce the system. Changing one constraint can

affect one or both of the other two constraints e.g. to reduce time would require either the

reduction in scope, the increase in resources (cost) or both.

Other terms used are “good” to refer to scope, “cheap” to refer to cost and “quick” to refer to time.

The phrase “pick any two” is often used to simplify the situation - that is you can have a “good

cheap” system, but it will take more time, or you can have a “quick good” system but it will cost

more. It follows a “cheap quick” system will not have all the functionality.

Iron versus Elastic
The reason why this model is called the “Iron Triangle” is because these constraints were

traditionally fixed at the beginning of the project (using the Waterfall method). This relies on the

premise that time can be estimated accurately, but unfortunately this is rarely true. If the time is not

correctly estimated, then it can be said the triangle is unbalanced and it is unlikely that the situation

will improve as the project progresses. In order to regain the balance, two of the points need to be

fixed and then the third can be allowed to change to bring back the balance.

If the team is well formed, then it would follow that the cost of the team can be predicted. It would

make sense to pin constraints that are well known and in many circumstances there will be a budget,

so this may make the case for fixture. It then comes down to the choices of pinning the scope or the

time. If all the features are required, then the time will need to be flexible as the other two

constraints will be fixed. If the time is fixed, then scope will need to be flexible. Now, the triangle is

no longer an “iron triangle” but rather an elastic one! It is better to have an informed flexible

triangle, than an ignorant rigid one.

Scope

Cost Time

2 Triangles within Triangles | Paul Lynham

However, if the project needs to keep the same scope, but needs to deliver earlier then more

resources are required, increasing the costs. The case is the same if the scope needs to be increased

but is to be delivered in the same time frame. This all seems straight forward, doesn’t it?

Hidden Complexity
In relation to software development, it is a well-established principle that just adding more staff

doesn’t result in an immediate gain in progress, as documented by Fred Brooks in his book “The

Mythical Man Month”. Brooks noted, "Nine women can't make a baby in one month". The reason is

that unlike other fields where for example providing more lorries and drivers results in more goods

being delivered quicker, software is intrinsically complex – we shall see why presently. Bringing extra

developers on to the team can result in the project slowing down initially. Like a medical doctor, a

developer should “first do no harm” and understand the system before changing or adding to it, so

that such changes do not break existing behaviour or make the system less stable. Initially, their

progress will be slow as they acquaint themselves with the system. Moreover, there will be more

communication and coordination and they will need support from the existing team to gain

knowledge, understanding and guidance and will therefore make the existing staff less productive. It

could take up to 3 months before extra resource has significant impact and during this time,

productivity will have dropped.

Software is developed by people and as Tom DeMarco and Tim Listeriii found in researching software

projects, the main causes of failure were not technical issues but people related issues such as

communication and understanding. “Peopleware” (anything that has to do with the role of people in

the development or use of computer software and hardware systems) is the reason for this

complexity.

The Quality Triangle
To complicate matters further, there is a fourth constraint at the centre of the 3 competing

constraints, namely quality as shown in figure 2. Manipulating the other constraints has an effect on

quality e.g. if all constraints are fixed and the project is behind schedule, then the only way to bring

in the project on time is to cut corners with the process. As an example, traditionally in the Waterfall

method, the stage that gets cut is the testing phase and thus this can lead to a product that has not

been fully tested and may contain many defects. This will be a lower quality product.

 Figure 2: The Quality Constraint

The problem with quality is how to define it! To different stakeholders it means different things. The

famous management consultant W. Edwards Deming said:

Scope

Cost Time

Quality

3 Triangles within Triangles | Paul Lynham

"The problem inherent in attempts to define the quality of a product, almost any product,

were stated by the master Walter A. Shewhart. The difficulty in defining quality is to

translate future needs of the user into measurable characteristics, so that a product can be

designed and turned out to give satisfaction at a price that the user will pay. This is not easy,

and as soon as one feels fairly successful in the endeavour, he finds that the needs of the

consumer have changed, competitors have moved in, etc."

Steve McConnell defines software quality as:

“The degree to which the software satisfies both stated and implied requirements.”

On a simple level it may be instinctive to think that the result of expending more effort on a product

will be an increase in quality – the perception is that hand crafted products are better quality than

mass produced ones. Proponents of Deming came up with such a formula for quality (when quality is

the focus):

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
𝑅𝑒𝑠𝑢𝑙𝑡𝑠 𝑜𝑓 𝑊𝑜𝑟𝑘 𝐸𝑓𝑓𝑜𝑟𝑡

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡

In reality it is difficult to get an exact measure of quality, rather it is possible to measure different

aspects of quality and then by some method of weighting or averaging, to get an overall estimate of

quality. For example a simple measure of defect quality could be the proportion of defects found to

every thousand lines of source code (KLOC), although more comprehensive assessments have been

formed.iv

One perspective of quality could be the things that may be appraised as making up the product

rather than the product as a whole. This could be the Design, Code, Tests and Documentation

artefacts that are produced. In turn these can be further decomposed, so for example the code

could be produced using Test Driven Development (TDD), as shown in figure 3. This produces both

code and unit tests, demonstrating there is some overlap between decomposed elements.

Figure 3: One Quality Decomposition Perspective

Tools can be used to show how much of the code is covered by the tests and a quality standard can

be defined accordingly e.g. “at least 70% of code will be covered by unit tests”.

Quality

Decomposes to TDD Coding

Design Tests

Documentation

Code

(Re)write a

test

Write

code Run all

tests

Run

tests

4 Triangles within Triangles | Paul Lynham

Quality can also be viewed as either functional or structural quality, where functional quality is

based upon the functional requirements and structural quality is based upon non-functional

requirements. There is another perspective of quality which is the external versus internal quality.

External is what the user experiences (behaviour), while the internal is how well the system is

architected, designed and coded. These perspectives are shown in figure 4.

Figure 4: Quality Decomposition Perspectives

The structure, classification and terminology of attributes and metrics applicable to software quality

management have been derived from the ISO 9126-3 and the subsequent ISO 25000:2011v quality

model, also known as SQuaRE. Effectiveness, Efficiency, Satisfaction, Freedom from risk and Context

coverage are the 5 attributes listed. The Consortium for IT Software Quality (CISQ) has used this as a

base and defined their own 5 major desirable structural characteristics needed for a piece of

software to provide business value (quality might be hard to define but value is easier to quantify

either directly or indirectly). These characteristics are Reliability, Efficiency, Security, Maintainability

and Size.

Figure 5: Decomposition of Structural Quality (left) and Internal Quality (right).

Steve McConnell lists 7 attributes for internal quality in Code Completevi, these being Flexibility,

Maintainability, Portability, Reusability, Readability, Testability and Understandability. The both

perspectives are shown in figure 5.

ISO 25000:2011 decomposes some of their attributes further, for example Satisfaction is

decomposed into Usefulness, Trust, Pleasure and Comfort. Functional and external quality can also

be decomposed. Some of these attributes can work in harmony with each other while others can

work in opposition. So, just at this level of decomposition we can see that the picture is quite

complex.

Quality

Decomposes to Alternative Perspectives

Reliability Flexibility

Maintainability

Understandability

Reusability

Portability

5 Triangles within Triangles | Paul Lynham

To the product owner or user, the external quality is the most important; however to those that

need to change and maintain the software, the internal quality is more important. Getting the

balance between perceived and actual quality is a balancing act and requires good stakeholder

management.

There is a continual improvement perspective of quality using the Plan Do Check Act cycle (PDCA) or

PDSA where S is for Study, emphasising analysis rather than just checking, as shown in figure 6.

Figure 6: Quality Improvement Perspective

The Cost Triangle
There are several perspectives on cost, from funding (e.g. two stage funding process), to the

resources used and to the accountant’s view.

One is looking at the resources used to develop the software product. This requires people,

computers and software such as development environments and tools etc. People can be

permanent staff and also contractors that are brought in for a specific project (their costs may be

allocated to a different budget than permanent staff). This is shown in figure 7.

Another perspective of costs is the categorisation into fixed costs (overheads that don’t vary greatly

with amount of product) and variable costs (vary proportionally with amount of product) and

without getting too far into accountancy, further subdivision into capital costs etc.

 Figure 7: One Cost Perspective

A further perspective is how the budget is spent on different activities of the project. These include

managing, administration, process development, requirements development, prototyping,

architecture, design, component acquisition, implementation, integration, testing, release and

metrics.

Scope

Cost Time

Quality

Hardware

Permanent

staff

Contractors

Software

Plan Study
Do
Act

6 Triangles within Triangles | Paul Lynham

The Time Triangle
Early on in the software project there are a lot of unknowns and many aspects may be unclear. The

Cone of Uncertaintyvii demonstrates that estimation in the initial stages of the project is subject to a

large degree of variation. However, as the project progresses, the uncertainty decreases and

estimates have more accuracy.

The time or effort required to complete the project can be calculated in a number of ways. One way

is for experienced people to estimate a project based upon previous experience (estimated based on

similar projects completed in the past). However, this is a ball park estimate.

Another way is each feature can be estimated in days and hours and the total time for all the

features totalled to give the total project time. This is difficult in reality as the estimate needs to

encompass all the work required for each feature (design, coding, testing, documenting etc.) which

assumes all the requirements are known and have been described to a degree that an a meaningful

estimation can be given. There are several problems here. Firstly, who supplies the estimates e.g. do

you use 1 designer, 1 programmer, 1 tester etc. or just 1 person. If you use 1 programmer, are they a

front end programmer or a back end programmer? Another problem is that unless scope has been

fixed, changes or additions to requirements will affect the effort required.

The Wideband Delphi method uses collaboration in a formal manner so consensus is reached using

anonymous time estimations. This method is purported to suit government organisations more than

private business and is thought to be linked to culture – it is not always possible to talk openly so an

anonymous process might help to elicit ideas and consensus.

In the agile methodology, “Planning Poker” is often employed using “Story Points” to estimate the

effort required. This is not a direct link to time, but more of an abstract metric using effort or

complexity linked to a known base line story. The process of discussing the story elicits both an

understanding of what is involved as well as an idea of the “size”. The whole development team

show their estimation using either cards or a mobile app, often based on a Fibonacci series of

numbers or a variation on this e.g. 0, 0.5, 1, 2, 3, 5, 8, 13, 20, 40 and 100 are quite common. The

people who give the outlying estimates explain their decisions and another round of estimates are

given. This process is repeated until a consensus is reached. Where a task cannot be confidently

estimated because of “unknowns” then a spike can be used whereby a fixed amount of time is

assigned to experiment and evaluate the issues involved. Once the spike is completed a better idea

of the issues will help in producing a better estimate.

There are also estimation methods based on Function Pointsviii, Use Case Pointsix and COCOMOx

amongst many others. One other method is the three-point estimation technique. This involves

producing three figures based on prior experience or best-guesses:

 a = the best-case estimate

 m = the most likely estimate

 b = the worst-case estimate.

7 Triangles within Triangles | Paul Lynham

From these a weighted average E can be calculated using the following formula:

𝐸 =
(𝑎 + 4𝑚 + 𝑏)

6

The standard deviation (SD) can also be calculated which will give an indication of the variability or

uncertainty in the estimation, using the formula below:

𝑆𝐷 =
(𝑏 − 𝑎)

6

The three-point estimation technique is shown in figure 8.

 Figure 8: Three-Point Estimation Perspective

Time management of the software project can also be broken down into the following steps:

1. Defining Activities
2. Sequencing Activities
3. Resource Estimating for Activities
4. Duration and Effort Estimation
5. Development of the Schedule
6. Schedule Control

Figure 9: Time Management (left) and Critical Path Management (right)

Scope

Cost Time

Quality Best
case

Most
likely

Worst
case

Weighted
estimate

Scope

Cost Time

Quality Defining
activities

Scope

Quality

Time Cost

Define
tasks

Create
flowchart

D
eterm

in
e

co
m

p
letio

n
 tim

es

Devise
backup paths

8 Triangles within Triangles | Paul Lynham

Another step-by-step project management technique for process planning that defines critical and

non-critical tasks with the goal of preventing time-frame problems and process bottlenecks is the

critical path method (CPM). The steps are:

1. Define the required tasks and put them down in an ordered (sequenced) list.
2. Create a flowchart or other diagram showing each task in relation to the others.
3. Identify the critical and non-critical relationships (paths) among tasks.
4. Determine the expected completion or execution time for each task.
5. Locate or devise alternatives (backups) for the most critical paths.

These steps are shown in figure 9 together with the time management perspective.

The Scope Triangle
Like quality, a formula has been devised that demonstrates that scope is related to time and costs

(resources). Using this formula, if one baker can make 50 loaves in a day, then 2 bakers can make

100 loaves in a day. This could hold true for software development if Fred Brooks’ experiences are

taken into account.

𝑆𝑐𝑜𝑝𝑒 = 𝑇𝑖𝑚𝑒 × 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

Rearranging this formula we can also view in terms of time:

𝑇𝑖𝑚𝑒 =
𝑆𝑐𝑜𝑝𝑒

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

And in terms of resources:

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 =
𝑆𝑐𝑜𝑝𝑒

𝑇𝑖𝑚𝑒

As with the other triangles we have encountered, there are many perspectives to Scope. An initial

perspective could be requirements priority i.e. which features are to be developed first? One

method is called MoSCoWxi which is a mnemonic for Must, Should, Could and Won’t (or Wish List).

This is shown in figure 10.

Requirements in the Must category are essential – without these there is no point in developing the

system! These are required to meet the business needs and must provide a coherent solution.

The Should category has the next priority, but the project’s success does not rely upon them.

The Could requirements are developed after the Should category and are developed if they do not

affect anything else in the project.

9 Triangles within Triangles | Paul Lynham

The wish list or Wont’s are requirements that have been recorded, but will not be developed for the

current version.

 Figure 10: The Scope Constraint

If the cost and time scopes are fixed, then the scope will be flexible and it is likely that the Could’s

will be the first casualties, followed then by the Should’s. The Musts cannot be dropped as they form

a coherent core that is required for the project to be useful. If these are dropped then the project

fails.

Triangles of Triangles
From this it will be appreciated that the original triangle contains a central triangle and 3 other

triangles. Each of these triangles contains triangles which can contain further triangles and some of

these triangles can also contain triangles! This can be likened to a Sierpinski trianglexii (a fractal

based on triangles). Not only can each triangle be decomposed and have an effect on each other,

but there can be several perspectives for each triangle, thus in reality forming a tetrahedron or

pyramid in 3 dimensions.

You may ask what is the significance of using triangles to represent these ideas? Perhaps an

Influence Diagramxiii or Systems Thinkingxiv may convey these ideas better than a triangle? Ultimately

the aim is to find a way of representing a problem and solution that is easily understood.

Steve McConnell has devised a test to evaluate the likelihood of the project’s success in his book

“Software Project Survival Guide”xv. What if a model could be built by combining the points used by

the test, selecting the perspectives that are used in a particular project, quantifying the variables

(using Fuzzy Logic?) and by use of algorithms a balanced triangle could be produced that shows the

scope, costs and time accurately for an acceptable level of quality for a given methodologyxvi?

On the face of it, this may seem unlikely; however, could this problem be similar to predicting the

weather? If good enough models can be produced (like the Metrological Office developed) then

even though there are a massive amount of variables, like weather prediction, it may be possible to

get a fairly good result at least 70% of the time? Some research has been carried out on modelling

the influence of unknown factors in risk analysis using Bayesian Networksxvii. This can use a concept

called “leaky variables” – factors that cannot easily be quantified but can affect the risk. However, I

would be interested in having your thoughts on modelling software development projects and if you

know of any specific related research?

Scope

Cost Time

Quality

Wont

Could

Should

Must

10 Triangles within Triangles | Paul Lynham

i
 http://en.wikipedia.org/wiki/CAP_theorem
ii
 http://en.wikipedia.org/wiki/Zooko%27s_triangle

iii
 Peopleware: Productive Projects and Teams, 1999, Tom DeMarco & Timothy Lister

iv
 https://resources.sei.cmu.edu/asset_files/TechnicalReport/1992_005_001_16088.pdf.

v
 http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733

vi
 Code Complete 2

nd
 Edition, 2004, Steve McConnell.

vii
 http://www.construx.com/Thought_Leadership/Books/The_Cone_of_Uncertainty/

viii
 http://en.wikipedia.org/wiki/Function_point

ix
 http://en.wikipedia.org/wiki/Use_Case_Points

x
 http://en.wikipedia.org/wiki/COCOMO

xi
 http://www.projectsmart.co.uk/moscow-method.php

xii
 http://www.oftenpaper.net/sierpinski.htm

xiii
 http://en.wikipedia.org/wiki/Influence_diagram

xiv
 http://en.wikipedia.org/wiki/Systems_thinking

xv
 Software Project Survival Guide, 1998, Steve McConnell

xvi
 http://www.tutorialspoint.com/management_concepts/project_management_methodologies.htm

xvii
http://www.researchgate.net/publication/274456154_Modeling_the_Influence_of_Unknown_Factors_in_Ri

sk_Analysis_using_Bayesian_Networks

