A Visual Cortex Model software package for evaluating the conspicuity of objects

C. J. Stone BSc FIAP MBPsS

Abstract
A system is described which enables a user to determine how conspicuous an object would be when placed in a particular location, thus facilitating the optimum positioning of items such as road signs or railway signals. The software lets the user manipulate images of an object in a scene and then uses a computational model of human visual processing to derive measures of conspicuity for the object in various potential locations, allowing the user to choose the position where the sign/signal can be most effective.

Introduction
In many real-world situations, the visibility of objects is important for reasons of safety; examples include railway signals, road signs, navigation buoys, aircraft instrumentation, to name but a few. Visibility is heavily influenced by the positioning of the object in its surroundings and the context of the background against which the object appears. For example, a railway signal may be easily seen in open countryside, but the same signal may be difficult to distinguish in a complex trackside situation on the approach to a major rail terminus - the visibility of a signal passed at danger was found to be a factor in the Ladbroke Grove rail disaster of 2009. When considering the installation of safety-critical signage where there may be several positioning options, it would therefore be valuable to have an objective, quantifiable measure of visibility for the various options so that the optimum position can be chosen, where the sign or signal is at its most conspicuous.
To arrive at a measure of conspicuity of an object at a particular location, a comparison needs to be made between the scene including the object at that location (the target image) and the same scene where the object is absent (the reference image). There can be many ways of making this comparison, but since the object is intended to be seen by the human observer it makes sense to base the comparison on how the human visual system operates.

Vision science background
A computational model has been developed by Tolhurst et al (2005) to predict human performance for discriminating between images, based on knowledge of the operation of the visual cortex area of the brain; this model is further described by Lovell et al (2006). The model analyses contrast differences across a range of spatial frequencies (contrast wavelengths) for the red, green and blue components of an image, where the RGB components are matched to the sensitivity responses of the long-, medium-, and short-wavelength cone receptors in the retina of the eye. The results are summed for red/green, blue/yellow, and luminance planes (corresponding to the mechanism of colour vision processing), and an overall visual difference measure is calculated based on the highest discrimination value obtained for the planes after accounting for their different criterion values.
For this model to work correctly, the red, green and blue components of the image have to be represented as XYZ colour coordinates. The XYZ colour space was designed by the International Commission on Illumination in 1931 to relate physical pure colours to physiologically perceived colours in human colour vision.

Technical description - the software system
I have developed a software suite which makes use of this visual cortex model to allow a user to estimate the conspicuity of signage (or other objects). A simple user interface allows the user to work sequentially through five key steps in determining conspicuity of a sign:
1. A digital photograph of the scene containing the sign is taken.
2. The image file is converted to XYZ colour space.
3. A section of the image containing the sign is chosen – this is the “target” image.
4. The image is edited either to remove the information on the sign or to remove the scene entirely from the scene. The resulting image is the “reference” image.
5. The cortex model is run to compare the target image with the reference image.

The model returns numerical values for colour and luminance that estimate the conspicuity of the sign, relative to its context. Finally the results are stored in a database to enable comparisons between visual scenes (such as different positioning options) to be made.

From a processing viewpoint there are four main modules of the system.
1. Conversion of the raw image file to an XYZ colour space.
2. Cropping the image to centre on the target sign.
3. Editing the image to remove the information on the sign, or remove the sign itself.
4. Running the cortex module against the original and edited images
Each of these processes is controlled by, and launched from, a graphical user interface which also allows the user to see the images, allows the user to interact with the editing of the images, and displays the conspicuity results to the user.
The raw image conversion uses the program dcraw, an open-source program which is able to read numerous raw image formats from a wide range of digital cameras. It is implemented as an executable file which is supplied with parameters to define the type of conversion required; in this case, conversion to a 16-bit linear TIFF in XYZ colour space. Since this produces an image file which appears dark when displayed on a monitor, the original raw file is also converted to a non-linear TIFF for the purposes of viewing the image. All subsequent image editing is applied equally to the linear and the non-linear TIFF files so that the user is able to work with images corrected for viewing on a monitor while the underlying linear relationships are maintained for processing in the cortical model.
Editing the image files is carried out by MATLAB programs. Firstly, the user selects the region of interest by positioning an outline box on the image, cropping the image to a 512 by 512 square. The MATLAB program achieves this by extracting the selected part of the image array and creating a new file containing this data. Next, the sign editing itself is carried out; the user can choose between two editing modes - to remove the information on the sign or to remove the sign altogether. Removal of the sign is a three-stage process; the user first zooms in on the part of the image containing the sign by positioning a moveable rectangle to define the edit area, then traces the boundary of the sign by making a mouse click at each of its vertices, and finally uses the sign boundary thus defined to act as a template to select another area of the image to use as background texture to replace the sign, giving the appearance that the sign has been removed from the scene. If the user wishes to remove only the information on the sign and not the sign itself, a mouse click is made at each of the vertices of the area in question, which is then replaced by the surrounding colour. This technique can be used, for example, to remove text or graphics from a road sign, or to give a railway signal the appearance of being switched off while the signal itself is still present. Both edit options use the MATLAB region-of-interest and fill functions for polygons to define the edit area and perform the editing.
After editing has been carried out, the cortex model can be applied to compare the original with the edited image. Comparison is made along the luminance plane and the red/green and blue/yellow opponent colour planes. The cortex model is coded across several MATLAB programs and outputs numeric values for each of the planes, and also a total value for the visual difference between the pair of images. This total value is an estimate of the conspicuity of the sign. Data output from the cortex model is displayed on the screen and can be stored in an integral SQL-Server database for later retrieval when required by the user.
Controlling the process and flow of data is accomplished by means of a graphical user interface on the user’s desktop. This GUI has been developed as a Win-Forms application in the C# language of Microsoft’s .NET software environment using Visual Studio software development tools. The MATLAB source code was compiled using MATLAB’s deploy tool to create compiled objects and build an installation package which can be used to install the MATLAB run-time environment on an end-user’s computer. This run-time environment contains all the files and dynamic link libraries necessary for running the MATLAB programs used by our software package, without having to install a full MATLAB system. The software package can therefore be installed on a user’s computer without the need to purchase additional software.
A key aspect of the operation of the GUI is the timely calling of the dcraw executable and the MATLAB program objects, passing parameters and control to them and suspending the GUI until data is returned. This is achieved by defining the executables as process objects within the C# program, setting up the parameters as attributes and applying a WaitForExit method to the objects. The processes can then be launched on the “click” event of an on-screen button, under control of the appropriate code within the event procedure.
< Figure 1 to appear here (file VDPscreen.jpg). Caption: The user interface screen for the visual difference program. >
[bookmark: _GoBack]
Conclusion
Optimum positioning of signage is essential in maximizing safety and minimizing risk. The software package described here avoids the need for rigorous calibration of cameras and enables personnel who are involved in making decisions about signage to quantitatively evaluate placement options based on the visual performance of a human observer, without requiring further technical or scientific intervention.

Acknowledgements
I would like to acknowledge the significant role played by the late Professor Tom Troscianko of the University of Bristol, who laid the foundation of this work and whose vision and direction enabled the project to be viable. His invaluable contribution to this and to the wider field of visual science will be sadly missed. I also acknowledge the work of Will Allen, also of the University of Bristol, in calibrating the test cameras and verifying the output of the dcraw program.
dcraw was developed by Dave Coffin as an open-source program to read and convert image files.
The visual difference prediction cortical model used by this software, and the algorithms for its implementation, was developed by Dr. David Tolhurst of the Department of Physiology at the University of Cambridge.

About the author
Chris Stone is a software developer at the School of Experimental Psychology at the University of Bristol. He started his career as a research assistant in the university’s Brain and Perception Laboratory and subsequently worked for many years in business systems development. He has been a Fellow of the Institution of Analysts and Programmers since 1994.

References
Tolhurst D. J., Parraga C. A., Lovell P. G., Ripamonti C., and Troscianko T. (2005) "A multi-resolution colour model for visual difference prediction". Presented at the 2nd Symposium on Applied Perception in Graphics and Visualisation, Corona, Spain.
Lovell P. G., Parraga C. A., Troscianko T., Ripamonti C., Tolhurst D. J. (2006) “Evaluation of a multi-scale colour model for visual difference prediction”. ACM Transactions on Applied Perception, vol. 3, no. 3, pp155-178.

